CPRS Custom Controls

Installation
Using Component|Install, Add the unit ORCtrls.pas. When you click ‘OK’, a new tab will appear on the palette entitled “CPRS”. The new listbox will be the first control listed on that tab.

TORListBox is a listbox that is derived from the standard TListBox. It supports all of the properties associated with the standard list box an adds the following:

TORListBox Properties

Delimiter
Used conjuction with the Pieces property. This is the character used to delimit the pieces. The default is ^.

DisplayText
Run-time only. Contains the list of strings displayed by the list box. If the Pieces or TabPosition properties have been used, DisplayText[Index] returns the string as formatted for display. The Items property, on the other hand, always returns the entire string as it was passed in. DisplayText is read only.

ItemTipColor
Sets the background color of ItemTips. The default is the window background color. Some may wish to change this to clInfoText.

ItemTipEnable
Enables the display of ItemTips in response to mouse movement or keyboard navigation through the list box. ItemTips are similar to ToolTips. They display small framed windows that contain the entire text of the list box item. This is useful if the listbox is too narrow to show the entire text

ItemIEN
Run-time only. Returns as a variant the contents of the first piece of the currently selected item.

LongList
When true, causes the list box to operate in ‘Long List’ mode. When in this mode, only a small portion of the list is loaded into the listbox at a given time. Whenever the list is scrolled such that another portion of the list is needed, the OnNeedData event is triggered. When in LongList mode, a separate scrollbar is used to navigate the list. This scrollbar has 100 positions which are mapped to an alphabetic sequence.

Pieces
A comma delimited list of integers (for example, “2,7,3”) which identifies which string pieces of Items[Index] should be displayed in the list box. If this field is left blank (the default), all pieces of the item string are displayed. The Delimiter property may be used to change the character on which string pieces are scanned.

References
Run-time only. Contains a list of variants that are stored with items in the list box. Each list box item may have one value of any type associated with it. This value may be changed or viewed in the References lists (for example, References[ItemIndex]). This operates similar to the Items.Objects list. But by storing variants, it allows the user to store a value to be associated with the listbox item without needing create and free an object.

ShowHint
Works like ShowHint in a regular listbox. However, the hint timer can be used by the ItemTip feature if this is set to true. So, if ShowHint is true (it is not necessary to have any text in the Hint property itself), the ItemTip will delay slightly before showing an ItemTip when the mouse first enters the listbox. This can eliminate some flickering.

TabPositions
A comma delimted list of integers(for example, “8,20,45”) which identifies the character positions within the list box at which tab stops should be set. When used in conjuction with the Pieces property, the pieces will be tabbed out to the character positions listed in TabPositions. The positions must be in ascending order. Character positions are based on the average character width of the font - not the maximum character width.

UniqueAutoComplete
when set to true. The auto complete functionality of the combobox will only work on unique entries in the list. Also this only functions correctly when LongList = False.

TORListBox Methods
function AddReference(const S: string; AReference: Variant): Integer;

Adds an item to a listbox and stores a value to be associated with it. The result of the function is the index at which the item was added. For example,

lstTest.AddReference(‘a display string’, MyIDNum);
When lstTest is clicked, the value of MyIDNum can be retrieved by looking in References,

with lstTest do ID := References[ItemIndex];
procedure InsertReference(Index: Integer; const S: string; AReference:

 Variant);
Inserts an item in a listbox at the position specified by Index and stores a value to be associated with that item.

function IndexOfReference(AReference: Variant): Integer;

Given a value, returns the first index in References that matches it.

procedure ClearTop;

Clears the items that have been added to a long list box by the application (not items added by a call to OnNeedData).

procedure ForDataUse(AList: TStrings);

If you have a list of items that should be added to a listbox in response to the OnNeedData event, you can pass the list into the listbox using the ForDataUse method. This method will automatically determine whether the items need to be added to the bottom of the listbox (because the use is scrolling down) or whether the items should be inserted at the top of the listbox (at the InsertAt position, because the user is scrolling up).

procedure InitLongList(const StartAt: string);

Tells a long list box to load the initial set of items (it makes the first call to OnNeedData). Normally an empty string is passed as the parameter, unless you want to initially display the list at somewhere other than the starting position.

TORListBox Events
OnNeedData
called whenever the listbox needs more items. The procedure generated by this event looks something like:

procedure TFrom1.ListBox1NeedData(Sender: TObject; const StartFrom: string; Direction, InsertAt: Integer);

where -

Sender
is the listbox that generated the event.

StartFrom
is a string that contains the text of the last item that was visible in the listbox. If you are using $ORDER, this is the string that you should start from. Use Direction to tell whether you should use the normal or reverse $ORDER.

Direction
is a set of codes that specifies which direction the user is moving through the listbox. llForward means the user is moving forward (i.e., pressing the scroll down button). llReverse means the user is moving backwards (i.e., pressing the scroll up button).

InsertAt
is the position at which items should be inserted in the listbox. If the user is moving forwards through the listbox, you should ignore InsertAt and simply add items to the listbox - ListBox1.Items.Add(x).

However, if the user is moving backwards (Direction = llReverse), you should insert items using InsertAt - ListBox1.Items.Insert(InsertAt, x).

TORComboBox is very similar to the standard TComboBox. However, it is not derived from TComboBox. Instead, it is derived from TWinControl and encapsulates TEdit and TORListBox controls. It supports the properties of TComboBox in addition to the TORListBox shown above. Also, TORComboBox does partial matches on the list as the user types, rather than just accepting free text into the box. Some properties are handled a little differently and are listed below. At the current time a dropdown list will not drop ‘up’ when the combobox is at the bottom of the screen (fairly easily remedied but not a high priority).

TORComboBox Property Exceptions

Items
The items property works the same as TComboBox except that it is available only at runtime, due to some differences in how the IDE handles compound components at design time. This should be remedied in the future.

Style
The only styles allowed are orcsSimple and orcsDropDown. The ‘or’ was prepended to prevent conflicts with the regular TComboBox styles. The owner-draw versions of these styles is not supported at this time.

OnKeyPause
This event is called in response to keyboard actions. When the user pauses typing for 500 milliseconds, this action is called. This can be used similar to an OnKeyPress event, except the delay allows the user to enter more that one character before the event is called. This is useful for expensive calls (like network calls) in response to keyboard actions.

OnMouseClick
This event differs from the Click event in that it is only called when the mouse (not the keyboard) is used to make a selection. (It is really triggered by the listbox MouseUp event). It can be used in conjunction with the OnKeyPause event to do processing whenever a combobox changes.

TORComboBox Properties - Future Enhancements
ListOnly
A boolean property which would disallow any text entry in the edit box that did not match an item in the list.

GlobalRef
A property that would optionally allow the combobox to be tied directly to a cross-reference on a server for lookup.

TCaptionListBox is a listbox that is derived from the standard TListBox. It supports all of the properties associated with the standard list box an adds the following properties:

 RightClickSelect: Boolean

Enables selecting an item by right clicking.

 Caption: String

Adds a caption property. I believe this was in hope of the screen readers picking it up.
 HintOnItem: Boolean – default = false

Make the ListBox's hint contain the contents of the listbox Item the mouse is currently over.
